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ON TESTING MONOTONE TENDENCIES

o Richard L. Dykstra and Tim Robertson

SUMMARY {

i In certain problems, it may be expected that a regression function has
a substantial overall tendency to be monotone and yet we may not be certain
that all of the restrictions imposed by a simple order are satisfied. Dis-
tribution theory for likelihood ratio tests of homogeneity of a collection

of normal means when the collection is "decreasing on the average" and for

. testing "decreasing on the average" as a null hypothesis, is presented. The

' is less restrictive than the usual

restriction "decreasing on the average'
monotone restriction and allows the data to give rise to "reversals" over
{ short ranges of valnes of the parameter set. It is closely related to the

i "starshaped ordering" restriction discussed in Shaked (Ann. Statist.

I (1979)).
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INTRODUCTION AND SUMMARY. The detection of a monotone relationsip between

two variables is an Important problem in statistics. One approach Lo such

problems is to base a conclusion about such a relationship upon an estimate
of, or a test of a hypothesis about, a regression function. Procedures for
| meking inferences about parameters which are known or suspected to satisfy
a trend have received considerable attention in the statistical literature
and a comprehensive treatment of much of the early work done on order
restricted inference is given in Barlow, Bartholomew, Bremner and Brunk
) (1972).
In certain problems, it may be expected that the regression function

has a substantial overall tendency to be monotone and yet we may not be cer-

tain that all of the restrictions imposed by a2 simple order are satisfied

(this point is made on page 165 of Barlow et al. (1972)). For example, it

is generally believed that mortality rates increase with age. The ages 15
through 35 crude mortality rates per 10,000 insured male lives are shown in

Figure 1.

This data is taken from the 1973 Reports of Mortality and Mor-

bidity Experience of the Transactions of the Society of Actuaries. The
rates are the 1965-70 ultimate experience and are based upon approximately
35,000 insured lives in each age group so that the standard error should be

roughly 1.7 per 10,000 lives. The hypothesis that the mortality rates tend

to increase with age seems to be confirm-d by the data in Figure 1. Fowever,

it is not at all clear that the underiyiny regression function is strictly

increasing over this range of ages. 1In fact, actuaries now believe that

there is a "bump" in the mortality rat: at about age 20 and that the mor-

tality rate actually decreases from, roughly, ages 20 through 25. The

1965-70 graduation:s were among the first to reflect this "bump.”
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The "usual” order restricted inference procedures do not allow the data

to give rise to such "bumps"

and the least squares order restricted estimate
of the mortality rate based upon this data is actually constant from ages i
19 through 28. These considerations suggest that inference procedures which
account for a somewhat less restrictive monotone relationship could be of

value. This paper is an account of our studies of one method of modeling a

monotone relationship which allows the regression function to go counter to

the oversall trend over short ranges of values.

Def: Suppose 6 = (91,92,"',9k) is a vector of parameters and

w = (wl,wg,-'-,wk) is a vector of positive weights. We say that € is

"decreasing on the average from the left" (DAL) with respect to w provided

- - — i

2 2922...26k where ei = (Z

-1 i
) )T (X8

j=1wj j=1 ij); i=1,2,--",k. (1.1)

Increasing on the average from the left (IAL), increasing on average from the
right (IAR) and decreasing on the average from the right (DAR) are defined

analogously.

Clearly if elz 922--- zek then 6 is DAL (also IAR). The order
restriction, DAL, is closely related to the "starshaped ordering" discussed in
Shaked (1979). A vector 6 is said to be lower-starshaped if, in addition
to (1.1), Ek 2 0. Shaked (1979) studies estimates of normal and Poisson
means subject to the restriction that they are starshaped and gives examples

from reliability theory and from branching prccesses in which such orderings

are of interest.

In Section 2, assuming that © i{s a vector of normal means, we derive

the restricted maximum likelihood estimate of 6. Our restrictions are




somewhat more general than those considered by Shaked (1979), in that we
allow "s", "="_, and "2" to be intermixed in the restriction (1.1). Our
method of derivation is different from that of Shaked and leads to the dis-

tributions of likelihood ratio statistics for tests where either the null

or alternative hypothesis requires that the parameter vector is monotone on
the averege. These hypothesis tests are discussed in Sections 3 and k.

The test statistics have null-hypothesis distributions which are mixtures
of chi-square or beta distributions--the so-called chi-bar-square (ie)

and E-bar-square (Ee) distributions.

2. RESTRICTED MAXIMUM LIKELIHOOD ESTIMATES. Suppose Yl,Y ‘.Y are

22 Tty

. . 2
independent random variables and that Yi n(ei,aio ) where 8,8, s8y

are known positive constants. Let v, = (9.102)—l and wi = 23=1w5; i=1,2,
+++,k. We wish to find the maximum likelihood estimator (MLE) of

6= (91,92,‘--,6 ) subject to the constraints

k
5; = 9, (or equivalently 5; = Gi Yy &=1,2,-°°,m, (2.1)
L1 e 1 £
vhere ©, = WTl .ZY w8, and i.<i.<--+<i is an ordered subset of
i i J=1737J 1 2 m

{1,2,+--,k}. Using the constraints (2.1) to write ij; J=1,2,-*,m in

terms of 9‘e for 4 ¢ [il,ig,‘°',im} we obtain

i i -1
6, =L _h o w26 (2.2)
i,j a=1 ja ﬁ=1m1+1 BB
where
-1 31-1 =1 i
h, =W II i

. W, W .
Ja 1j-1 Y=a 1Y iY 1




{We adopt the convention that a product over the empty set equals one while

B Mgl o B

a sum over the empty set equals zero.) Substituting (2.2) into the log-
likelihood function and equating the derivatives to zero we obtain the
equations
m
(6

J-yj) —Za=£(J)(yia'eia)ha,£(J)”’ja =0; J € {il’igs"',im] (2.3)

i
i “= vy

£ | then the equations (2.3) have a surprisingly tractable solution.

o, ) . s
\ where &(3j) = 4 iff i1 <jJ < i, If we define y; = W, L

Theorem 2.1. The solutions to the equations, (2.3), are given by

~ m _ -1
6, =y, +Z o ly. =y, v, W,y o3 € {io,i .1l (2.4)
. J J v=L(J) i 71 -1 1,4y 1’72 m
; which implies that
~ — m —_— _1
8, =y *Lpag(yy vy v W5 b=1,2,0em (2.5)
b b a a a

e A

Proof: We begin by arguing that if the vector 8 satisfies (2.4) and the

~| restrictions, (2.1), then its values for Jj € {il,i --,im] must be given

2’
by (2.5). First, note that

i =1
Ax %, = Wfl 2 1 \ é
3 1l 11-1 J=1 JJ
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We proceed by induction. Assuming (2.5) holds for b and noting that

i - -
TP wd =w 8. , we consider
J=1 373 ib 1b
T R Ko )
To+1 pe1 T Ly 1y IFR 0
-1 — m _— -1 — —_
=W E.y. +W, Ly, -y Jw, W +W, y -V, v,
ib+1-1 iy lb i a=b+1 i 154, ia i 1b+1_l ib+1-1 i, 1y
m -1
+ (W W)Xy, -y )w.W]
1b+l-1 1b a=b+l Vi i-1 1a a
-1 [ - m -1
= W, W, Y. +W, L (y. -y bw, W :l
lb+l 1 1b+1_1 1b+l-l 1b+1_1 a=b+l Vi i-1 1a i,
. m - -1
=y +X (y. -y Jw, W.o.
=bh+
ib+l a=b+2 v i i -1 1a 1a

Thus, by induction, (2.5) holds for b = 1,2,*+,m.

Comparing (2.4) and (2.3) it suffices to show that
m -1 m
Tpugly, =¥, _Jw, W= =L _(y, -6 Yy (2.6)

for & =1,2,-+-,m. The equation, (2.6), holds for &£ =m since

s = -1
ei =y; o hmm = wim—l and

AR e g e

- -1 - -1 ves
(yi -y -1)wi W, = (yi -, W, W 3b=1,2,7""m. (2.7)
b b b

b 1 T

 —_ ey

In order to establish (2.6) in peneral, we use induction. Assume that (2.6)

holds for £ = c+l. Then
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T
— -1 .m -1
= (y, =y, v, W, + Ly, -y, Jw, W,
lc i 10—1 b=c+1 i 1b lb 1b-l
-1 — < - -1
=W Yy -[V “ (v, = w, W ] w
i, l{ i, b=c+1 i, "1y iy 1b-l i,
m — -
LR A OO A '[1 tuy W 1-1]
b T N 8 c
—1 ~ m ~
LA L Lpmer ¥y =65 ) b,e+l"i
c c b b
[14w, W23
i -1
c e
2 -1 m
= - 1 - -,
[yl 61 ]hcc i +J1 wl -1 zb=c+l(yi 6 )hb,c+l i
c c c b b b
m -
=2 _ (y. -6, ) w,
z:b—c 1b 1b b,c iy
using (2.7),(2.5), the induction hypothesis, Wl = h,, @nd the fact that

i-1
e
hb W, -WTl =h . Since (2.6) holds for all £, the theorem is

,ctl i 1C—l b,c

established.

We now show a remarkable property of the solutions given by (2.4) and
i-1 «
)

3

(2.5). Since 6, =W _ . w6,
i 1c—l J=1 GJ

(¢

i ~ (] ~
c
= ) +
ZJ=1ejwj ; _16i LA Gi
d
=W, @ {2.8)
i i
4 (53
el m -1
=W %’ +L(yo-y v, W ]
i 1‘ b=c+1 i, lb—l i, iy

- e mem e ar————
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by (2.5). Suppose 1 f {il’iq’...‘imj and also that 1 is the largest

element of {11,12,"',im} such that i <i. Then, using (2.8) and (2.h),
Py - —1 i-1
81 = Yy Zj =1 éﬁ"j
i-1 “
—ILZJ =1 J Y3 2 =i+l J J]
-1 [_ n — -1 i-1
; =W, (W, |y, +Z_  (y. -y. w. W, }+Z . v,y (2.9)
1—1{ i, i, b=c+l i, 1b—1 iy iy J—1c+l 373
p !
4
-1
r + z‘b"c+1 1 -1) wl .[wl l-wl ]
. b b c
{ m
- -1
=y, o tL _ Ay, -y, v W
' i-1 b=c+l iy 1b 1 lb lb
Thus, comparing (2.4) and (2.9), we see that
6, . >(<) 6, iff 7. . >(<) Yo

: i-1 i i-1

. o

regardless of 1 -,im. It follows that if we wish to find the MLE of

1’12’..

the vector € subject to the constraints

=
it
[

-
\V]

-

-
o

2 (=) 0, (equivalently ©

Ky %1 i o1 = (=) 8

PP e

s then we know that the iEﬂ constraint ?% 1= ei needs to be imposed if and
{ —

': only if Yig < (>) Yy (see Barlow et al. (1972), page 89).

' Compared to other restricted optimization problems, this is a note-

‘{ worthy property and it allows us to write the solutions in a concise form.
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Adopting the standard notation, a = max{n,O} and a = min{a,O} we
have established the following theorem which generalizes the work of
Shaked (1979).
Theorem 2.2. The MLE of the vector 6 = (6],02,'--,6k) subject to the
constraints E}—l (2) (=) (=) 6}; i=1,2,""",k 1is given by
o m = Vi -1
= + - W = - Lk
6, =¥, ijiﬂ(yj Vo) Ny i =1,2,
where
(max(;i ,yi), +) 2
- . .th . .
(Wi,vi) = (yi, 1) if the i constraint is =
(min(yi ,yi)’ -) =
For example, if the restrictions require that 6 is DAL, then
P - k — + -1
= + - . 2.10
€, = max(y,,y,) Zj=i+1(yj .Vj_l) LA ( )

If h is some integer (1 <h < k) and our restrictions require that

< € .00 < > > ...
Gl 92 Gh eh+l Gk, then
6 Fov) *I- . Ay, )" w Wik
= mi + - s < :
5 min yi’yi J=itl yJ yj_1 wj § for i h while
6. = (y ) + Zk (y ~v. ) w we h<3j <k
i = max yi,yi j=iel yj-yj-l wj”j for ! J .

The MLE of 6 subject to the requirement that 6 is lower starshaped

~

(6 is DAL and 6, =2 0), say G, is easily expressed in terms of the
k

given in (2.10)., 1In particular,
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'Y —_—
6 i -3
if yk 0
-y if v <
6, yk if yk 0.

1

The proof of this is a straightforward verification of the properties char-

acterizing projections in Theorem 7.8 of Barlow et al. (1972).

3. RESTRICTED HYPOTHESIS TESTS. Consider the problem of testing the null

hypothesis HO: 61==62 == %{ when the parameter vector € is known
to be DAL. In other words, test HO against the alternative Hl—HO (H1
but not Ho) where Hl: @i 2 Eé 2 e 2 5#. We consider a likelihood ratio

statistic which has a surprisingly tractable distribution.

It is well known that the MLE's, under H are given by

09
- ——' —l k 2 » 1 -— e s a
?& =Y = Wk Zi=l WiYi (free of 07); {=1,2, k.

and

Since the MLE of the vector € which satisfies Hl does not depend on 02,

it follows that the MLE's under H are 0, as derived in Section 2 and

1
- -1¢k (Yi-éi)?
02 =k L, ——I—.
i=1 a

The likelihood ratio, A, 1is then given by




o _5k
o i=1
v 80N S (6D +p It (v 06 T . (3.2)
1 1 i i i i=1 i 1 i i
'; The class of vectors which satisfy ]I1 rorm #» closed convex cone

~

which contains all the constant functions. The vector 6 is the weighted

least squares projection of the vector Y onto this cone so that

k 2 sk o Ao L
‘ Lo (-8 )8w =27 (1,-B)¥ v, =0

i i i

(see Barlow et al. {1972), page 318). Thus, the last term in (3.1) is zero

and a likeliliood ratio test rejects H in favor of H for large values of

0
k
Q=1-4"" === =4 : (3.2)
oy —Y) w,
i=1 i
Suppose that il,ig,---,im are those indices where 61-1 = ei when
6 is obtained (i.e., those indices for which Y&—l < Yi). Using (2.4) and

(2.5) we can write

.m — _
where S =Y _ (Y, -V, Yw, -W‘]. Adding the first term from each of the
R N

) above sums and using (2.7), we oblain ’




12

- 2 _
= (Y, =Y, ) w W _lwi1 +W, 8
hoh 1™ 1

NN

The term, Wi Sg, cancels part of the second term of the second sum. Pro-

ceeding, using similar reasoning we obteain
k - m —_ 2 -
T o(v.-6)%, =" (v, ¥. %w.ow, Wl (3.3)
a=l "1 i
a a
A fairly simple induction yields

k =2  _ vk T 42 -1
Lo (0 -D% =20 (y,-y, )W, W (3.4)

Using (3.3) and (3.L4) in our expression for Q we obtain

2
Zigr %3
Q="
2. 7°
1 1

= i 1 se e 3 _ v / 1/2_1/2 s - e
where I = {11,12, ’1m} and Zi = (Yj—Y. Yw W, i=2,3, k.

i-1771 i-1 ;
Under HO, ZE,Z3,"',Zk are independent, standard normal random variables
so that for a given set of indices, {11 X ",im}, Q has a beta
distribution with parameters (k-m-1)/2 and m/2.

Now, suppose I C {2,3,---,k} = IO and that EI is the event
{Zi 20; 1 €1 and Zi <0;i¢g I}. If we let TI = ZiGI Z?, then we may write

P[Q = t,EI]

{—Q—ztlE]Pmﬂ

= P[B(k-m—l)/2,m/2 = t] R (1/;)

since T /T is independent of E
oY o

1 1’
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If we partition the event [Q 2 t] by intersecting it with all such events

EI and then collect terms, we obtain the following theorem.

Theorem 3.1. In testing HO: 61 =92 = =9k apainst the alternative

H.-H_ where H specifies that the parameter vector 0 1is DAL the like-

10 1
, . s 2/k k
lihood ratio statistic Q = 1-A = (L (9 —Y /(Z (Y —Y) ) has

a null hypothesis distribution given by

Pl = t] =K1

k-1 Ayk-1
m=o< )(1/L) P[B

n > t] (3.5)

(k-m-1)/2,m/2

for all t, where Ba 8 denotes a standard beta random variable with
b ]
parameters & and B and B, 8 (Ba O) is taken to be degenerate at
b k]
0 (1) when 8 >0 (a >0).

We note that the distribution of Q given in (3.5) is exactly the

same as the distribution of

Z].‘Zl(z./\o)?

k-1 ?
y1 =1 Zy

where Z1 22 ’Zk~1 are independent standard normal random variables.

If, in fact, HO is not true then we can replace Yi by Yi-ei in our

expression for  and say that & 1is distributed as

k-1 :
L. l(z,+6.) A0l? Vk ][(z +6,) nol?
i=1 i i
k=1 o T Tke k ] (3.7)
NI ol ((/. +8, ) A0 + L, (2,0, ) vol?
where 7_,72 v L7 are independent stundard normal random variables and

170 M
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1k

_ = . 1/2 1/2 . ~1/2. , _
61- (eiﬂ-ei)wiﬂ WOTWTs i=12,0 e kel (3.8)

Note that if the parameter vector € satisfies Hl then 6i 20; i=1,2,

2 2

++,k=1. Moreover if 6i 2 0 then [(Zi+6i) AQlC 2 [Zi A0TT  and
[(Zi+5i) VO]2 < [Zi\/O]z. This implies that (3.7) 2 (3.6) and shows that
our likelihood ratio test is unbiased.

Of course the same distribution theory holds for testing H 6. =6

0" 17 %
. =9k ageinst the alternative Hl-HO if Hl specifies that 6 is
IAL, IAR or DAR. Tt is perhaps somewhat surprising to note that we may
intermix the inequality signs. For example, the same distribution theory
would hold for testing HO against Hl-HO if H1 specified that
91 < 92 RN Sh 2 eh+l 2z ...02 ek for some value of h.

If 02 is known, a likelihood ratio test of HO against Hl—HO would

reject for large values of

~

_ _sk =2
R=-21nA = Li=l(9i—Y) v, -
The distribution of R is the same as that of

Zl.‘jl[(z.'«&.) AOT? (3.9)
i=1 i i

vhere Zi and 6i; i=1,2,°"",k=1 are defined as before. If the null
hypothesis is satisfied then 6i =0; i=1,2,°*°,k-1 and if H_. 1is satis-

fied then 61 20; i=1,2,--+,k-1. Thus, the test is unbissed and the

null hypothesis distribution of R 1is given by

P[R2t] = Zx;é(k;ll)(uz)k‘l p[xi zt) (3.10)



2 . .
where xm denotes a standard chi-square random variable with m degrees

>
freedom (x6 = 0).

Consider the problem of testing H as a null hypothesis. If 02

1

is known then a likelihood ratio test rejects I, for large values of
4

k R
R =L (Y -6)w,.
=1 1 1 i

The random variable R’ is distributed as

511z +8. ) vo)? (3.11)
i=1 i i

and 6ig 0 if H. 1is true. Thus ((zi+¢‘,i)VO]25[zi\/o]2 and

1

Swgey, Pol¥ * t1 = PHO[R' 2 t] =Zf;;é(k;1)(1/2)k‘l P 2t]. (3.12)

If 02 is unknown, we cannot estimate 02 in the denominator of the like-
lihood ratio since we have only one item from each population. Thus, in
this case we cannot construct a likeliheod ratio test.

Assume we have a random sample of size n from each of our k normal
populations and le* i& denote the mean of the items of the sample corre-
sponding to the population with mean Gi; i=1,2,-++,k. The maximum like-
lihood estimators subject to the constraints, (2.1), are given by (2.4) and
(2.5) with Yy renlaced by iﬁ.
Ir 02 is unknown, a likelihood ratio test rejects for large values of

kK

s =2
Q= 127 . L1z (8-K)Twy o

"<k ©n = \e Kz 22 k a2
Lioy Dymy (¥R wy + 24, (6260w on +L_(8,-0%; n

¥
1
§
Y
4
b
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where Y = k-l Z}i(‘:: -f.

Since the XiJ —i} are independent of the i&

and since Zk =1 Z; -1 X) v, /n has a chi-square distribution with (n-21)

degrees freedom it follows that Q has the same distribution as

ik 1[(z +6, ) 7012

k 1 2 N-1 2
25 S1(2.+8,) Zl‘k

where N = k'n, Zl’z2’...’ZN—1 are independent standard normal varisbles,

and dﬁéi is defined by (3.8). The following theorem is a consequence of

F, this representation.

W

Al

Theorem 3.2. The likelihood ratio test of HO against Hl-HO based upon

Q@ 1is unbiased and the null hypothesis distribution of Q is given by

| Plaz t] =Zx’;;é(k;l)(1/2)k‘1 P[B 2 t].

(k-m=1)/2,(N-k+m)/2
] } If o is known then the likelihood ratio statistic R = -2 In &
i gives rise to an unbiased test and its null hypothesis distribution is given
by (3.10).
In testing Hl as a null hypothesis when 02 is known the likelihood
ratio statistic R’ = -2 1In A.='Z§_ ()‘c’-é‘).)2-m‘r.1 has a distribution which
l may be represented as in (3.11). Thus, the null hypothesis distribution
is as in (3.12).

1 If the common sample size, n, 1is larger than one, we can test H

2
as a null hypothesis when © is unknown. In testing Hl against ~H._,

'.1 reject Hl for large values of




2/N i=1'0 0 Ty

Q=147 = (3.13)
k n —_ 2 k o ~ 2 k -~ 2
Ziep Zj=1(xij-xi) v +Z0_ (X -6) enw, + T (8,-X) nw, .

It can be argued that Q’ is distributed as

Zf;l[(ziwi) vol’

- s - 2
sE-lig w5y N1 50
i=1" 71 i i=k i

where MG;Gi is defined by (3.8).

The following theorem is a result of this representation.
Theorem 3.3. A likelihood ratio test of H] against ~H1 rejects

for large values of Q’ (as given in (3.13)), is unbiased and

b1 Vo o5 ke1fk-1 k-1
"Poar Pla2t] = PHO[Q =t] —Lm=0( m )(1/2) PIB /o, (Nom-1) /0 2 B

L. CONCLUDING REMARKS. If we wish to replace "s<" or "2" by "=" in

the restriction imposed by our alternative hypothesis, H the appropriate

l,
distribution theory may be found from the results in Section 3 by appropriate
adjustments in the degrees of freedom.

We conducted a Monte Carlo study of the power of the test statistic,

‘k S T2 . .
-.Li=l(ei-y) w.» for testing Hj against H, -

02 is known. Some of the results of that study are given in Table 1. 1In

this study we let k=5, ai =1; i=1,2,~"",5 and 02 = 1, We approximated

Ho (le @ is DAL) when

the power of each of three test statistics at cach of 28 parameter vectors,

6. This was done by randomly generating 2000 S5-tuples of normal random

numbers where the iEﬁ entry in the 5-tuple has a normal distribution with

R e T STy ey e ooy
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mean ei and variance 1. The entries in the table are the fraction of
times the test statistic excecded the .05 critical value computed from

]
its null hypothesis distribution (x; for x?, using (3.10) for R and

using Theorem 3.1 in Barlow et al. for 3?). Corresponding to each param-
eter vector we have given its spacing and a measure, A, (A2 = 21;1(91-5)2)
of its distance from the null hypothesis Ho.
The first thirteen © vectors in the table are decreasing and the
power of ie is significantly greater than that of either R or X2-

However, for these vectors R 1is significantly more powerful than is x?.

The last fifteen 6 vectors are DAL but not strictly decreasing. Here R

is significantly more powerful than either X? or 112. Note that X? is
more powerful than ‘§2 for the last six 6 entries.

We have been unable to substantially relax the assumption of equal
sample sizes in Sections 2 and 3. 1In other words, this analysis depends
very heavily on the assumption that the weights in the restriction imposed
by H1 are proportional to the variances of the sample means. If we relax
the assumption of equal sample sizes we must be willing to use weights
v, = ni(a,iCIQ)—1 in our réstriction, Hl. This latter approach is the one
taken in Shaked (1979).

A different definition of decreasing on the average can be found in

the work of Robertson and Wright (1981). They define the parameter vector,
.~1 k

Foy - e

i -1
i 2 (k-1 6,
6, to be decreasing on the average {DA) if i ZJ=1 GJ (k-1i) zJ=i+l 33 %
i=1,2,-°-,k-1. If O is DAL or IAR then 68 is DA, in the above sense. %
Robertson and Wright (1981) derive maximum likelihood estimates of a vector é

of normal means subject to the restriction that it is DA and discuss testing

s

homogeneity of O when it is assumed to be DA and testing DA as a null

pAr-ra
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Table 1. Power Functions of Xg’ 7(2 and R.
Power Power Power
(61’62’93’914’65) Spacing A of XQ of ')’(2 >f R
(0.0,0.0,0.0,0.0,0.0) 1,1,1,1,1 0 .061 .0kL7 .058
(0.4,0.3,0.2,0.1,0.0) 5,4,3,2,1 316 .06y .083 .08k
{1.0,.75,0.5,.25,0.0) 5,4,3,2,1 .79 .089 .173 .1k7
(2.0,1.5,1.0,0.5,0.0) 5,4,3,2,1 .58 .206 459 .381
(4.0,3.0,2.0,1.0,0.0) 5,4,3,2,1 .16 .Th3 .913 .87k
(1.0, 9,.8,.7,0.1) 10,9,8,7,1 .707 .082 .1h6 .118
(2.0.1.5,1.6.1.4,0.2) 10,9,8,7,1 Jh1 .172 .359 .286
(5.0,4.5,4,0,3.5,0.5) 10,9,8,7,1 .5U .838 .950 .926
(.1..31..3,.1,0.0) 2,2,2,2,1 .089 .059 .052 .060
(.2,.2,.2,.2,0.0) 2,2,2,2,1 .179 .061 .056 .06k
{.5,.5,.5,.5,0.0) 2,2,2,2,1 bt .073 .081 .079
(1.0,1.0,1.0,1.0,0.0) 2,2,2,2,1 . 894 .101 .166 .126
(5.0,5.0,5.0,5.0,0.0) 2,2,2,2,1 AT 967 .992 .98k
(.3,0.0,.1,0.0,.1) L,1,2,1,2 .225 .061 .060 .071
(.6,0.0,.2,0.0,.2) h,1,2,1,2 .490 .0T1 .083 .101
(1.5,0.0,.5,0.0,.5) 4¥,1,2,1,2 1.22 L1k .197 .225
(3.0,0.0,1.0,0.0,1.0) 4,1,2,1,2 2.Ls5 RS .583 .653
(6.0,0.0,2.0,0.0,2.0) 4,1,2,1,2 .90 .988 .989 .997
(.4,.3,0.0,.1,.2) (5,4,1,2,3) .316 .063 .066 .079
(.8,.6,0.0,.2,.4) (5,4,1,2,3) .632 .0T5 .098 .110
(2.4, 1.8,0.0,.6,1.2) (5,4,1,2,3) .90 .296 <397 AN
(4.8,3.6,0.0,1.2,2.4) (5,4,1,2,3) .79 .880 .913 .946
(.2,0.0,.1,.1,.1) (3,1,2,2,2) L1 .059 .052 .063
(.4,0.0,.2,.2,.2) (3,1,2,2,2) .283 .06k .058 070
(1.2,0.0,.6,.6,.6) (3,1,2,2,2) .849 .099 .095 .128
(2.4,0.0,1.2,1.2,1.2) (3,1,2,2,2) .70 .2bk .221 .329
(4.8,0.0,2.4,2.4,2.4) (3,1,2,2,2) .39 . 795 .696 .867
(7.2,0.0,3.6,3.6,3.6) (3,1,2,2,2) .09 994 969 997
- Rl PRPEEINS. ™ - .
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hypothesis. They assume that 02 is known and consider likelihood ratio
statistics whose null hypothesis distributions are chi-bar-square distri-
butions.

The maximum likelihood estimates of mortality rates discussed in Sec-
tion 1 subject to the restrictions that they are IAL and DAR are given in
Figures 2 and 3. Surely, actuaries would feel that either one of these esti-
mates requires additional smoothing. However, they both give an indication
of the "bump" at age 20 and either one {or their average) might provide a

better starting point than the crude mortality rate or its "isotonic

regression” (which is oversmoothed) for the graduation.
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